PURDUE

UNIVERSITY.

We’ve got you Covered:
Type-Guided Repair of Incomplete Input Generators

Patrick ..
Zhe Zhou Ashish Misra Suresh Benjamin

LaFontaine Jagannathan Delaware

:-‘ -
h//‘ o=

i

&
’d

o,
‘.‘
)
S | ‘
~) I' /
3 d : A
\7 [/

C/Vho wants to release bug-free COdeD

oy OB 0%,

1M sty
Ir=czl ol @)
P B

GVho wants to write tests?)
)

m— ——

Keep Testing?

PBT in a Nutshell

Generate Inputs

Check
Precondition

Check
Postcondition

Property-Based Testing is an
automated testing strategy.

A variety of frameworks in all
of your favorite languages!

PBT in a Nutshell

Generate Inputs

e

Precondition

Generate a bunch of random well-sized lists

let bad test = Test.make
~count:20000
~name:"tests R us”
(default gen ())

(fun (n, 1) ->

Postcondition
assume (List.length 1 <= n);
<2V27 func 1 n [> check post)

True

Keep Testing?

PBT in a Nutshell
@

Built-in or are automatically derivable
(@@ gen] or#[derive (Arbitrary)]

<

" R

Precondition

let bad test = Test.make
~count:20000
~name:"tests R us"
(fun (n, 1) ->
assume (List.length 1 <= n);

True

Check
Postcondition

False

V% jg;gi func 1 n [> check post)

Keep Testing?

No

PBT in a Nutshell

Generate Inputs

m Check
Precondition

Check
Postcondition

False

Keep Testing?

Generated inputs must satisfy the precondition

let bad test = Test.make
~count:20000
~name:"tests R us”
(default gen ())
(fun (n, 1) ->
assume (List.length 1 <= n)
func 1 n [> check post)

PBT in a Nutshell

Generate Inputs

E Check

Precondition

User function under test

let bad test = Test.make
~count:20000
~name:"tests R us”

[onrran]
(default gen ())

(fun (n, 1) ->
alse assume (List.length 1 <= n);
|> check _post)

X

True

Keep Testing?
No

PBT in a Nutshell

Generate Inputs

E Check

Precondition

. m Check
Te ? I
Keep Testing? . Postcondition

X

User post-condition maps output to
True/False

let bad test = Test.make
~count:20000
~name:"tests R us”
(default gen ())
(fun (n, 1) ->

assume (List.length 1 <= n);

func 1 n [>]check post

PBT in a Nutshell

Generate Inputs

e

Precondition

Run for 20k attempts or until
postcondition fails

let bad test = Test.make

~count:20000

~name:"tests R us”
(default gen ())
(fun (n, 1) ->
assume (List.length 1 <= n);

True

Check
Postcondition

False

jg;gi func 1 n [> check post)

Keep Testing?

10

PBT in a Nutshell

Generate Inputs

E Check
Precondition

Check
Postcondition

Keep Testing?

Focus of this talk

Wasted work where we
aren’t testing the user’s
function

11

So you think you can test?

How well does the default generator do?

let bad test = QCheck. (Test.make
~count:20000
~name:"tests R us”

(default gen ())

(fun (n, 1) ->
assume (List.length 1 <= n);

func 1 n [> check post))

12

So you think you can test?

Sized List: only about 50% of inputs generated inputs are valid

> dune exec example
generated error fail | pass ota time test name
[v] 20200 0 0 110050 / 20000 0.3s tests_R_us

success (ran 1 tests)

assume (List.length 1 <= n);
unc p) checCk pos

13

So you think you can test?

More restrictive precondition -> more rejected inputs

let bad test = QCheck. (Test.make
~count:20000

~name:"tests R us”
(default gen ())
(fun (1) ->
assume (1s even list 1);
unc N CheCk posS

14

So you think you can test?

More restrictive precondition -> more rejected inputs

Even List: About 10% of inputs are valid

> dune exec example
generated error fail [pass / total time test name
[v] 20200 0 0 12138 / 20000 0.3s tests_R us

success (ran 1 tests)

assume (1s even list 1);
unc N CheCKk pos

15

So you think you can test?

Specialized generators -> all inputs valid

let bad test = QCheck. (Test.make
~count:20000

~name:"tests R us"”
(even list gen ())
(fun (1) ->
assume (1s even list 1);
unc n [> check pos

16

So you think you can test?

Specialized generators -> all inputs valid

> dune exec example
generated error fail}] pass / total time test name
[v] 20000 0 0120000 / 20000 0.2s tests_R_us
success (ran 1 tests)

(fun (1) ->

assume (1s even list 1);
unc n |> check pos

17

So you think you can test?

Users need to write specialized generators to ensure enough valid inputs

let rec even list gen (s : 1nt) : Int list =
1f s == 0 then [2 * 1nt gen ()]
else
1f bool gen () then [2 * 1Int gen ()]
else

2 * 1nt gen () :: even list gen (s - 1)

18

So you think you can test?

Users need to write specialized generators to ensure enough valid inputs

let rec even list gen (s : 1nt) : Int list =
1f s == 0 then [2 * 1nt gen ()]
else
1f bool gen () then [2 * 1Int gen ()]
else
2 * 1nt gen () :: even list gen (s - 1)

Different precondition? Different generator needed

19

C/Vho wants to release bug-free COdeD

w% ¥¢¥4Vﬁ&¥4 .

bk

Who wants to write test-input generators?)

m— ——

GVho wants to release bug-free CodeD

OB5: Developers see writing generators as a distraction, preferring
to use derived generators. Since PBT is often done in the midst of

Goldstein et al., "Property-Based Testing in Practice,” ICSE 2024

Program Synthesis to the Rescue?

High Leverage, Low Investment Opportunity for Program Synthesis

22

Program Synthesis to the Rescue?

Program synthesis requires a specification of the users intent

even list gen:

“Only non-empty lists of even 1ints”

23

Program Synthesis to the Rescue?

Program synthesis over an initial template with components

even list gen: “Only non-empty lists of even 1ints”

==

let rec even list gen (s : 1nt) : 1Int list =
1f s == 0 then Err

else Err

24

Program Synthesis to the Rescue?

Many valid programs make for disappointing generators

even list gen: “Only non-empty lists of even 1ints”

==

let rec even list gen (s : 1nt) : 1Int list =
1f s == 0 then Err
else Err

? Always producing [0] is valid

let rec even list gen (s : 1int) : 1Int list =
1f s == 0 then [0]
else [0]

25

Program Synthesis to the Rescue?

even list gen:“Every non-empty lists of even 1ints”

==

let rec even list gen (s : 1nt) : 1Int list =

1f s == 0 then Err

else Err

Good generators produce every
* valid input

let rec even list gen (s : 1int) : 1Int list =

1f s == 0 then [2 * int gen ()]
else

1f bool gen () then [2 * 1Int gen ()]
else

2 * 1nt gen () :: even list gen (s - 1)

26

Missing ingredient: “Coverage”

even list gen:“Every non-empty lists of even 1nts”

even list gen: {s:int

-> [int list | all evens (v

Formally:
“only” -> safety property
“every” -> coverage property

| v >= 0}
(V)

&& 0<len (v)<=s+1]

“Coverage Types”

Covering All the Bases: Type-Based Verification of Test Input
Generators

ZHE ZHOU, Purdue University, USA

ASHISH MISHRA, Purdue University, USA
BENJAMIN DELAWARE, Purdue University, USA
SURESH JAGANNATHAN, Purdue University, USA

Test input generators are an important part of property-based testing (PBT) frameworks. Because PBT is
intended to test deep semantic and structural properties of a program, the outputs produced by these generators
can be complex data structures, constrained to satisfy properties the developer believes is most relevant to
testing the function of interest. An important feature expected of these generators is that they be capable of
producing all acceptable elements that satisfy the function’s input type and generator-provided constraints.
However, it is not readily apparent how we might validate whether a particular generator’s output satisfies
this coverage requirement. Typically, developers must rely on manual inspection and post-mortem analysis of
test runs to determine if the generator is providing sufficient coverage; these approaches are error-prone and
difficult to scale as generators become more complex. To address this important concern, we present a new
refinement type-based verification procedure for validating the coverage provided by input test generators,
based on a novel interpretation of types that embeds “must-style” underapproximate reasoning principles as a

27

Program Outputs

28

Safety
(Over-approximate)

Program Outputs

29

Safety
(Over-approximate)

Program Outputs

Coverage
(Under-
approximate)

30

Coverage + Synthesis = Cobb

Safety Coverage

Liquid Haskell
Flux
RefinedRust
RefinedC
refined(scala)

Type-Based

Verification Poirot

Type-Based Synquid

Synthesis Cobalt _C O b b
ReSyn (This work)

SuSLik

31

So how does Cobb work?

Cobb in a Nutshell

lll
. L 4
* *

Incomplete |—

Missing

Generator
Abduce Coverage)
Target
Coverage
Type Current

Cove ra ge Tcu rrent

lllllllllllllll
.
’0

Coverage Type>

(Localization)
Typed |[1-0:T1
Holes | M-00: 1)

Phase 2: Synthesize Repairs

Coverage [N ﬁ v
Complete |<—§-(Sketch Complete?)‘

Generator Partially Completed
l x Typed Holes
Well-Typed Terms withr
EFnumerate Unique Coverage » Attempt T
Terms M -e:T Repair Holes

* *
L 4 .
lll

A

llllllllllllllllll
L 4
<

[: T3
[:T)

*
*

Cobb in a Nutshell

. L
* L

Incomplete [=-2 Phase 1: Infer Missing Coverage
Generator : Missing :
Coverage Type .. :
Abduce Coverage) < yp>(Local|zat|on) 5
Target | g
. issing o
Coverage ..

Type Current Typed | [1-00:T
Coverage Tcurrent HOleS rzl_ I:l Tz

Cobb in a Nutshell

1 Phase 2: Synthesize Repairs
Coverage [— :
Complete |<—§-(Sketch Com lete?)‘ . A :
Generator P ' Partially Completed | [: T3
: Typed Holes :
: X [FE1:T)
Well-Typed Terms withr :

Enumerate Unique Coverage | Attempt to

_ ferms f1h- & Repair Holes

. _/

Phase 1: Infer Missing Coverage

S etti 1 g u p Sy n t h €S I S é(Abduce Coverage) CW::;T% pe'(Localization)
o — — . S —— 4

Users provide a Coverage Specification and an incomplete generator

even list gen: {s:int | v >= 0} let rec even list gen
-> [1int list | (s : 1nt) : 1int list =
all evens(v) && 0<len(v)<=s+1] 1if s == 0 then Err

else Err

lllllllllllllllllllllllllll

36

Phase 1: Infer Missing Coverage

Setting up Synthesis IM vissng

C T)
Coverage) m:ge ! pe-(Locallzatlon)

| Masng | o~

...

Phase One: Augments the sketch with typed holes

even list gen: {s:int | v >= 0} let rec even list gen
-> [1int list | (s : 1nt) : int list
all evens(v) && 0<len(v)<=s+1] 1if s == 0 then Err

else Err

lllllllllllllllllllllllllll

let rec even list gen (s : 1nt) : 1Int list =
j_f S == O then P]_ |_ 1 Tmissing_l
else I'; = 0O : Imissing 2

37

Setting up Synthesis

Phase Two: Component-based Synthesis to fill holes

even list gen: {s:int | v >= 0}
-> [1int list | I Phase 2: Synthesize Repairs
all evens (v) && O<len(v)<=s+l]qsk N | §
etch Comp lete?J Partially Completed | ;& : T4
\ l % Typed Holes e T
Well-Typed Terms with

Enumeratew Unique Coverage IAttemptto
Terms J MFEe.m LRepair Holes

. .
- .
--

let rec even list gen (s : 1nt) : 1Int list =
j_f S == O then P]_ |_ 1 Tmissing_l
else I'; = 0O : Imissing 2

38

Cobb in a Nutshell

1 Phase 2: Synthesize Repairs
Coverage [— :
Complete |<—§-(Sketch Com lete?)‘ . A :
Generator P ' Partially Completed | [: T3
: Typed Holes :
: X [FE1:T)
Well-Typed Terms withr :

Enumerate Unique Coverage | Attempt to

_ ferms f1h- & Repair Holes

. _/

Enumerate
Terms

l Sketch m
| complete? .

Pick a hole to
work on

Generate a
new term

Safe and unique
coverage?

Bottom-up, Cost-based Enumeration

Iterate until sketch 1s fully
repalred or max-bound 1s hit

Provides some of the
missing coverage?

Attempt to
repair holes

40

Sketch
complete?
No
I Pick a hole to I
l work on I
Generate a
new term

Safe and unique
coverage?

Provides some of the
missing coverage?

Attempt to
repair holes

Enumerate
Terms

A Typing Context and set of local
variables per path

1"

|_

- LUmissing 1

41

Enumerate
Terms

Sketch
complete?
No
Pick a hole to
work on
Generate a
new term
Safe and unique
coverage?
Provides some of the
missing coverage?

True

Attempt to
repair holes

Term cCcoOSt:d
s—1
2*1nt gen ()

2*s

Small terms that are
initially enumerated

42

Sketch
complete?
No

Pick a hole to
work on
Generate a
new term
m Safe and unique

coverage?

Provides some of the
missing coverage?
True

Attempt to
repair holes

Enumerate
Terms

Term cost:

I'n - s—-1 : 11 \/
I'' = 2*1nt gen() : 1:2/
't B 2*s : 13 ‘/

Infer a coverage type for
each term

Typecheck: safe
Subtyping check: unique

43

Sketch
complete?
No
Pick a hole to
work on
Generate a
new term
Safe and unique
coverage?

Provides some of the @

missing coverage?

Attempt to
repair holes

Enumerate
Terms

Term cCcoOSt:d
't - s-1 : 11
I'' = 2*%1nt gen(): 1

' 2%s : T3

Subtype of missing coverage?

X
X

Tmissing_l <: T3 x

Tmissing_l <: T2

lmissing 1 < T2

Will be used to enumerate larger terms

44

Sketch
complete?
No
Pick a hole to
work on
Generate a
new term
Safe and unique
coverage?
Provides some of the
missing coverage?

True

Attempt to
repair holes

Enumerate
Terms

Term cost:o’
even list gen(0)
even list gen(int gen())

even list gen(s - 1)

Recursive terms are
prioritized

45

Sketch
complete?
No
Pick a hole to
work on
Generate a
new term

E Safe and unique
. coverage?

Provides some of the
missing coverage?

Attempt to
repair holes

Enumerate
Terms

Term cost:af

Some terms are rejected for being
unsafe or “coverage equivalent”

*int gen() not less than S

*even list gen(0) equivalent

to the base case
46

Sketch
complete?
No
Pick a hole to
work on
Generate a
new term
Safe and unique
coverage?
Provides some of the
missing coverage?

True

Attempt to
repair holes

Term cost:o’’

2*int gen ()

2*int gen ()

Enumerate
Terms

[]

even list gen(s-—-1)

47

Enumerate
Terms

Sketch
complete?

No

work on Term cost:a’’
I'' - 2*¥1int gen() :

t .
el 'y + 2*int gen ()

m Safe and unique even_llst_gen (s—=1) = Ts
. coverage?
Provides some of the
missing coverage?

)
1
| I
)
—
-

Attempt to
repair holes

48

Sketch
complete?
No
Pick a hole to
work on
Generate a
new term
Safe and unique
coverage?

Provides some of the W
missing coverage? .
Attempt to
repair holes

Enumerate

Terms

Term cost:o’’

' = 2*1nt gen() :

)
1
| I
)
—
-

' = 2*int gen ()

even list gen(s-1) : Ttg
Tmissing 1 < T7 l

Tmissing 1 <: Tsg l

Some terms are a sub-type of our missing
coverage, thus could repair the hole

49

Enumerate
Terms

Sketch
complete?
No
Pick a hole to
work on Term cost:a’’

' = 2*1nt gen() :

t .
el I'' - 2*int gen ()
Safe and unique even_llst_gen (s—=1) = Ts
coverage?

Imissing 1 < Ty l

Provides some of the Tmissing 1 < s l

missing coverage? -

Some terms are a sub—type of our missing

] Attempt to coverage, thus could repair the hole
repair holes

)
1
| I
)
—
-

50

é)
Attempt to

Repair Holes
. J

Extract the optimal repair

‘Fz — genListsz:[l:int list | T]‘

7 ¢
r2+ [2%int_gen()]: ‘rz —int_gen() :: genEvens(sz-1): ... ‘
[l:intlist|len(l)=1
&& even(hd(l))]
1
@ 3
M+ 2%int_gen() :: genEvens(sz-1) :

o+~ [0]: L-[2*n]:... [l:intlist|len(l) <=sz+1
[L:int list | len(l) = 1 && not (empty(tail(l)))

&& hd(l) = 0] && len(tail(l)) <=sz

&& all_evens(l)]

f

Attempt to A
M+ genListsz:[l:intlist] T]‘ \Repair Holesj

N

I+ int_gen() :: genEvens(sz-1): ... ‘

w
7y ML [l:intlist|0<len(l) <=sz+1
/ && all_evens(l)]

- [2%int_gen()]:
[l:intlist|len(l)=1
&& even(hd(l))] M

/>/ O P - 2. int_gen() :: genEvens(sz-1) :
[l:intlist|len(l)<=sz+1
&& not (empty(tail(l)))
M- [O] : M- [2*n] . && len(tail(l)) <= sz
[int list | len(l) = 1 &&all_evensil)
&& hd(l) = 0]

That was cool and all but show
me some numbers!

Evaluation: Benchmarks

4.5k lines of mOCaml (https://github.com/Pat-Lafon/Cobb)

Evaluate Cobb on a variety of :
 Datatypes: Lists, Trees, Red-BlackTrees, Simply Typed Lambda
Calculus
 Properties: Sized, Sorted, Duplicate, Unique, Valid, Well-Typed
 Typing contexts: Branch conditions, Local variables

54

https://github.com/Pat-Lafon/Cobb

Evaluation: Benchmarks

4.5k lines of mOCaml (https://github.com/Pat-Lafon/Cobb)

Evaluate Cobb on a variety of :
 Datatypes: Lists, Trees, Red-BlackTrees, Simply Typed Lambda
Calculus
 Properties: Sized, Sorted, Duplicate, Unique, Valid, Well-Typed
 Typing contexts: Branch conditions, Local variables

Using benchmarks of generators from the literature, created a set of
incomplete generator variations

A “Sketch” is then the most general form, only simple control flow and
holes

55

https://github.com/Pat-Lafon/Cobb

Evaluation: Cobb is pretty fast!

Cobb satisfies the precise coverage < 1 minute

L0 Benchmark Total Times (Sketch Cases Only)

Total Time(s)
=
<

[
o
T

56

Evaluation: Cobb vs Coverage-only repair?

Trivial solution: the default generator is always coverage complete!

let rec even list gen (s : 1nt) : Int list =
else I = O : lmissing 2

let rec even list gen (s : 1nt) : Int list =
1f s == 0 then default list gen ()

else default list gen ()

57

Evaluation: Cobb vs Coverage-only repair?

Trivial solution: the default generator is always coverage complete!

Count how many outputs are valid (higher is better)

Even List Coverage Repaired

let rec even list gen 20000 = Cobb
(S : 1nt) . 1nt llSt — $17500’ [incomplete variation
: | EEm sketch
if g == 0 then §1sooo sketc
. 12500
default list gen () =
- — > 10000
else o 7500
default list gen () £
_ _ S 50001
=2
2500
o | | % 5 o .
AS] ~ Vv % AN
& &

Generator variations

58

See Paper(or come talk to me) for more!

- Simply Typed Lambda Calculus evaluation

- More detailed evaluation numbers/analysis

- Comparison with a safety-based repair strategy

- Comparison with dynamic test input generation

- Dynamic Constraint solving is at least an order of
magnitude slower

- Sensitivity to the set of user-provided components

- Soundness Theorem

59

Conclusion

- Problem: Users don’t want to write input generators

Safety Coverage

Liquid Haskell
Flux
RefinedRust
RefinedC
refined(scala)

Type-Based

Verification Poirot

Synquid
Cobalt

Cobb
ReSyn (This work)

SuSLik

Type-Based
Synthesis

60

Conclusion

- Problem: Users don’t want to write input generators
- Solution: Coverage Type-Guided Program Repair

- Phase 1: Characterizes missing coverage

- Phase 2: Uses coverage to guide repair

Safety Coverage
Liquid Haskell
Type-Based Flux
Verification RefinedRust Poirot
RefinedC
refined(scala)
Type-Based Synquid
Synthesis Cobalt _C (o b b
ReSyn (This work)
SuSLik

61

Conclusion

- Problem: Users don’t want to write input generators
- Solution: Coverage Type-Guided Program Repair

- Phase 1: Characterizes missing coverage

- Phase 2: Uses coverage to guide repair

- Results: Efficient, one-time synthesis task
- https://github.com/Pat-Lafon/Cobb

Safety Coverage

Liquid Haskell
Flux
RefinedRust
RefinedC
refined(scala)

Type-Based

Verification Poirot

Synquid
Cobalt

Cobb
ReSyn (This work)

SuSLik

Type-Based

Synthesis

62

https://github.com/Pat-Lafon/Cobb

